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Abstract A model spin system with disorder is examined. The disorder is not necessarily 
quenched but it may evolve on a time scale that can be tuned. The annealed and qumched cases 
obtained as limiting caws are, respectively, the infinite-range Ashkin-Teller ( P  = 2 colours) 
model and the Hopfield neural net (finite number of patterns P = 2). The intermediatedynamics 
model behaves a Hopfield associative memoiy on short time scales and like an Ashkin- 
Teller systtm in the long nm, The time evolution of the order parameten is obtained from the 
master equations in the mean-field approximation. 

Competition between different interactions might lead to very interesting and complex 
behaviour in models arising in many different areas, from the physics of disordered systems 
and neural nets to, for example, economics, biology and cognitive psychology. A very 
useful approximation in the statistical mechanics study of disordered systems has been 
to consider the disorder to be completely static. The quenched-disorder approximation 
sometimes simplifies the problems to a level amenable to analytical treatment. While the 
coupling ‘constants’ in spin systems or synaptic couplings in neural nets are kept fixed, 
the spins or neural activation evolve rapidly [l-31. Another possibility, termed annealed 
approximation, is to let the disorder evolve on the same time scale as the spins or neural 
activation evolve. The choice of the most suitable approximation in a given problem is 
based on physical or neurophysiological grounds. It is nevertheless quite obvious that 
sometimes it might be necessary to consider the case where the disorder evolves on a time 
scale intermediate between the two limiting types of behaviour. The aim of this paper is to 
present a model system where the spins interact through couplings which themselves evolve 
with an intermediate characteristic dynamical time scale. This time scale can be tuned and 
the two limits, annealed and quenched, can be recovered. A related problem has recently 
been studied in a quite different system and under different approximations by Coolen er a1 

The basic observation behind the treatment presented here is as follows. A system 
with at least two different classes of spins interacting through translationally invariant 
constant interactions resembles a disordered system if some of the classes evolve on a 
different time scale, much longer, say, than the others. Consider the master equation for 
the Markovian time evolution of the probability distribution of the spin configurations (two 
classes). The Glauber transition probabilities can be thought of as products of two terms: 
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one the probabilty per unit time of choosing a given spin to be flipped, the other as the 
probability, once chosen, of actually being flipped. It is through this last term that the model 
equilibrium properties are determined, for example, if they satisfy detailed balance (with 
the correct Gibbs distribution). To deal with intermediate dynamics, the first factor has to 
be appropriately modifed so that one of the classes, on average, is chosen with a different 
probabilty than the other. In this way, on a short time scale, fast (or frequently chosen) 
spins evolve under a set of effective interactions that are almost quenched. 

The method is better explained through a simple example, but it is possible to extend it 
to more general settings. Consider the Hopfield model for an associative memory with two 
patterns. At each site i = 1. .  . . , N there is an Ising variable Si = f 1 .  The Hamiltonian is 

The first two terms are the usual Hebbian contributions from each pattern, while the thii 
is just a constant if the disorder is taken as quenched. Jr and JZ are constant couplings. 
The introduction of the new sets of variables U; = f l ,  ri k 1 and pi k 1, subject to the 
constraint uipi = t i  at each site i ,  and defined by ui = pi =(:Si, ri = t;.$ leads to 
the following form for the Hamiltonian: 

Note that the form of this Hamiltonian is exactly the same as that of the infinite-range 
symmetric Ashkin-Teller model ( A W  [5]. But this is not the ATM if the {r i )  are quenched. 
The difference is not in the form of the Hamiltonian but in the dynamics of the different 
degrees of freedom. In the ATM all the different classes of spins U, p, t evolve under 
similar dynamics. Let P([ui ,  pi, q]; I)  be the probability of the ATM system being in a 
configuration (U, p ,  r )  at time t .  Its time evolution is given by the master equation: 

P ( b ,  P ,  TI;  t + 1) = P(b, P. TI; 0 
+C[p(Ifiu,fip,r1;T)W(fiu,fip,5-fu,p,t) 

I 

-p(b, A 51; r)w(u, A -+ fin, fip. r ) ]  

+C[p(Ifiu,p,fir~;t)w(~t;.ls./L.fir + ~ , L L , ~ )  
I 

- p ( h  P ,  T I ;  r)wu, /L. r -+ fiu, P ,  f i r ) ]  

+ 
-P({u, p. r l ;  ~ ) w ( u .  p, r + U ,  f ip ,  fir)] 

[PUO,  f ip.  f i r ) ;  OWU, f i p ,  fir --f Q, P ,  r) 
i 

(3) 

where fi is the spin-flip operator at site i. The W's are the transition rates and contain 
all the information about the system. The three terms in brackets in the previous equation 
correspond to the increase or decrease of probability due to transitions into and out of a 
given state, from each of the possible spin-flip types, that is, flip of one of the three pairs: 
(U; ,  pi). [ut, 5i) or {pt, si}. Note that single spin flips are impossible since the constraint 

quite arbitrary, and the only requirement imposed is that the equilibrium distribution be the 
xp ,  . -  - ~i has to be satisfied at each site i. The choice of the transition probabilities is 
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Gibbs dishibution for the appropriate Hamiltonian. As usual, detailed balance. ensures the 
correct equilibrium. For the ATM. the Glauber-like probabilities are 

X ( E I .  €2. c3) = ( e , ) f ' u j ( @ ~ ~ z ~ ~ ( e ~ ) ~ 3 ~ ~ .  (5) 

The ci are + or - and e, = exp((pJp/N)xjf i  p j ) ,  where Jp = Jl(J2)  for p = U and 
p(r )  defining the usual order parameters mp = (4 xi pi), for p = a, p, 5, respectively, 
where the angular brackets denote averages with respect to the probability distribution at 
time t. Since this is an infinite-range model, the time evolution of order parameters can be 
calculated exactly. For example, the evolution of m, is given by 

xyz + x fyz - ylzx - z/xy 
xyz + x/yz i- y/zx + z/xy 

Am,(t + 1) = -m,(t) + 
where x = exp(pJlm,), y = exp(pJ1me) and z = exp(BJzm,). The equations for m, and 
m, are obtained by cyclic permutations of x, y and z .  In equilibrium, Amp's vanish and 
the fixed points are just the mean-field equations. 

A Monte Carlo simulation of the ATM model could proceed by choosing a random site 
i and then choosing with equd probability the pair of spins to be tentatively flipped with 
probabilities given by equation (4). If the choice of the two pairs (a, r )  and (p,  r )  is less 
probable than that of (a. p), then the system will evolve, on a short time scale, to an aImost 
fixed configuration {TI. The asymptotic behaviour of the system should nevertheless be 
characterized by the Gibbs distribution of A m ,  although it might take longer for the {T] to 
equilibrate. A set of transition probabiIities which (i) can be interpreted as a probabilty w 
per unit time of choosing a pair (a, p) and U of choosing (p, r )  or (U, t) times a transition 
probability, (ii) satisfies detailed balance for the ATM for U ,  tu # 0, (iii) has the correct 
limits for w = U ( A m )  and U = 0, w # 0 (Hopfield model), and (iv) leads in a simple 
manner to mean-field equations, is given below. 

The x's are the same as before, while the denominators are contrived to simplify the algebra 
without spoiling the detailed balance. Notice that in each of the pairs of terms within the 
same brackets in equation (3) the denominators are the same. Defining 
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we have 

where ( P I ,  p2, m) is a cyclic permutation of (U. p, 5). 
The denominators associated with the transitions of a given pair of spins are invariant 

under the operator fi acting on that pair of spins, thus ensuring conditon (iv) above. A 
procedure similar to the one that led to the mean-field equation (6) of ATM leads to the three 
evolution equations for the order parameters (p = U, p, 5): 

The coeficients of the p equation are obtained in the same way; as expected 
from symmetrj, they satisfy the relations F((x ,  y .  z )  = F t ( y ,  z,x), F:(x, y ,  z )  = 
F ~ ( Y , z , X ) , F ~ ( x , y , z )  = F:(Y ,Z ,X) ,  F?(X,Y ,Z)  = F f ( y , z , x ) .  And finally, for the 
r equation 

Fo - 2 ( x y z  + z / v )  + r ( x / y z  + y / z x )  + r ( x y z  + z / x y )  + ( x / y z  + y / z x )  1 r - C [  ( 2 Y Z  - X / Y Z  - Y/ZX) (2Z/XY - x / y z  - y / z x  

F; = F,' 

F: = - 2xyz  + x / y z  + y / z x  + 2ZlXY + x / y z  + y / z x  
2 '[ ( x y z  + Z / X Y )  + r ( x / y z  + y / z x )  r ( x y z  + Z / X Y )  + ( x l y z  + y / z x )  

In the annealed limit, r = 1, when the two dynamic scales are the same, equation (6) 
together with its permutations are recovered, while for r = 0, the quenched limit, the 
evolution of, for example, m, is given by 

By replacing U c) p, the evolution of m ,  is obtained. The third equation is just Amr = 0. 
These are the correct evolution equations for the order parameters in the Hopfield model 
with two memory pattems and with correlation (c'.$*) = m,. 

Results from the numerical iteration of the evolution equations (10) are shown in 
figures 1-3. These are the flows in the m, and m, plane, for different sets of initial 
conditions. 

In general, for r # 0, the system behaves on short time scales as a Hopfield associative 
memory and the order parameters (mo, m,) flows are directed towards the Hopfield fixed 
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Figure 1. m, versus m,: the initial value of m, = 0.1 @JI = 2.Q p h  = 0.5). (0) me ATM, 
r = 1, (b) r = 0.01, the system evolves to the Hopfield fixed points on a shOa time scale and 
very slowly (thick line is due to crowding of symbols) Io ATM. (c) The Hopfield model, r = 0. 

points. These, however, should better be called pseudo-fixed points, since they too are 
evolving, on a slower time scale, as the correlation of the patterns, (p1t2) = m,, evolves 
to its equilibrium value mp(@J1 .  @h). In figure I(u-c) the couplings are such that the 
annealed ( A m )  system is in the ferromagnetic phase. It can be seen that the system flows 
to a fixed point where all order parameters, including m,, are large (figure l(a)). At this 
value of @J1, the Hopfield model can retrieve and distinguish both patterns (figure (IC)). In 
the intermediate dynamics case (figure l(b)) the 'memory'patterns are very slowly becoming 
more correlated and so the system, which behaves on a fast scale as an associative memory, 
eventually cannot separate the two patterns anymore, but still remains in a ferromagnetic 
(mixture) phase. 

An example in the region near the first-order transition separating ferromagnetic and 
paramagnetic states in the A m  is shown in figure 2(a). The positions of the fixed points 
depend on the initial values. 

The basin of attraction of the ferromagnetic fixed point is reduced when quenching is 
increased. The flow is almost totally towards the fixed point associated with the Hopfield 
model for the initid value of the patterns' correlation mT = (b1{2). 
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FigureZ. Sameasfigurel,forUleinitialvaluem, =O.l@Jl  =0.85.pJ*=0.85).  @ ) r = l  
ATM. (b)  r = 0.15, (c) r = 0. 

In figure 3, m is shown in the paramagnetic phase. For m,(O) sufficiently large, the 
Hopfield model is in the ferromagnetic mixed phase. 'Ihe intermediate dynamics model 
(figure 3(b)) flows toward the ferromagnetic pseudo-fixed point at the begining of the 
iterations and eventually turns towards the origin. 

In conclusion, a method for analysing the behaviour of unquenched disorder in a simple 
model has been presented. The system with intermediate dynamics flows rapidly to the 
pseudo-equilibrium of the quenched model and follows the evolution of these pseudo-fixed 
points as they slowly approach the fixed points of the annealed system. Other models with 
two different time scales can be treated using the same methods; an extension to the Hopfield 
model with a finite P is the next natural step. The diluted king model with unquenched 
disorder is now under investigation. However, the question of how to treat unquenched 
random disorder for more complex systems, which in the quenched l i t  have a spin-glass 
phase and thus require more sophisticated methods (e.g. replica or cavity methods) than 
the Hopfield model with finite P, remains unanswered. It is possible that the confluence 
of pseudo-fixed points, as in figure I@), occurs in a hierarchy of steps, remanescent of the 
large number of relaxation times of the quenched complex system. 
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Figure 3. Same as figure 1, for the initid value of m, = 0.7 ( B J L  = 0 .9 .ph  = 0.001. 
( a )  r = 1 ATM, (b)  r = 0.2, (e) I = 0. 
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